Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398534

RESUMEN

Vaccinium dunalianum leaf buds make one of the most commonly used herbal teas of the Yi people in China, which is used to treat articular rheumatism, relax tendons, and stimulates blood circulation in the body. In addition, 6'-O-caffeoylarbutin (CA) is a standardized extract of V. dunalianum, which has been found in dried leaf buds, reaching levels of up to 31.76%. Because of the uncommon phenomenon, it is suggested that CA may have a potential therapeutic role in hyperlipidemia and thrombosis. This study was designed to study the efficacy of CA on treating hyperlipidemia and thrombosis and the possible mechanisms behind these effects. Hyperlipidemia and thrombosis zebrafish models were treated with CA to observe variations of the integrated optical density within the vessels and the intensity of erythrocyte staining within the hearts. The possible mechanisms were explored using network pharmacology and molecular docking. The results demonstrate that CA exhibits an excellent hypolipidemic effect on zebrafish at concentrations ranging from 3.0 to 30.0 µg/mL and shows thrombosis inhibitory activity in zebrafish at a concentration of 30.0 µg/mL, with an inhibition rate of 44%. Moreover, network pharmacological research shows that MMP9, RELA, MMP2, PRKCA, HSP90AA1, and APP are major targets of CA for therapy of hyperlipidemia and thrombosis, and may relate to pathways in cancer, chemical carcinogenesis-receptor activation, estrogen signaling pathway, and the AGE-RAGE signaling pathway in diabetic complications.


Asunto(s)
Arbutina , Ácidos Cafeicos , Medicamentos Herbarios Chinos , Hiperlipidemias , Trombosis , Animales , Arbutina/análogos & derivados , Fibrinolíticos/farmacología , Hiperlipidemias/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Trombosis/tratamiento farmacológico , Pez Cebra
2.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400575

RESUMEN

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Asunto(s)
Productos Biológicos , Fibrinolíticos , Trombosis , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Trombosis/tratamiento farmacológico , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Animales , Activación Plaquetaria/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
J Biomol Struct Dyn ; 42(4): 1692-1710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37232450

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Conventional antithrombotic therapy has reported hemorrhagic accidents. Ethnobotanical and scientific reports point to Cnidoscolus aconitifolius as an antithrombotic adjuvant. Previously, C. aconitifolius leaves ethanolic extract displayed antiplatelet, anticoagulant, and fibrinolytic activities. This work aimed to identify compounds from C. aconitifolius with in vitro antithrombotic activity through a bioassay-guided study. Antiplatelet, anticoagulant, and fibrinolytic tests guided the fractionation. Ethanolic extract was subjected to a liquid-liquid partitioning, followed by vacuum liquid, and size exclusion chromatography to obtain the bioactive JP10B fraction. The compounds were identified through UHPLC-QTOF-MS, and their molecular docking, bioavailability, and toxicological parameters were determined computationally. Kaempferol-3-O-glucorhamnoside and 15(S)-HPETE were identified; both showed affinity for antithrombotic targets, low absorption, and safety for human consumption. Further in vitro and in vivo evaluations will better understand their antithrombotic mechanism. This bioassay-guided fractionation demonstrated that C. aconitifolius ethanolic extract has antithrombotic compounds.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Fibrinolíticos , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Fibrinolíticos/farmacología , Disponibilidad Biológica , Etanol/química , Anticoagulantes/farmacología
4.
J Ethnopharmacol ; 323: 117669, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38159828

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY: This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS: The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS: DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.


Asunto(s)
Imidazoles , Oligoquetos , Piridazinas , Trombosis , Enfermedades Vasculares , Animales , Humanos , Pez Cebra , Células Endoteliales de la Vena Umbilical Humana , Oligoquetos/metabolismo , Proteómica , Fibrinolíticos/farmacología , Lipoproteínas LDL/metabolismo , Enfermedades Vasculares/metabolismo , Factores de Transcripción/metabolismo , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
5.
Environ Res ; 231(Pt 1): 116096, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37172679

RESUMEN

The goal of this study was to extract saponins from the tuberous root of Decalepis hamiltonii and assess their potential clinical applications, which included antioxidant, antibacterial, antithrombotic, and anticancer properties. Surprisingly, the results of this study revealed that the extracted saponins have excellent antioxidant activities, as demonstrated by 2,2-diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Hydrogen peroxide (H2O2), and Nitric oxide (NO) scavenging assays. Nonetheless, at a concentration of 100 g/mL, crude saponin had excellent antibacterial activity, particularly against gramme positive bacteria (Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis, and Micrococcus luteus), followed by gramme negative bacteria (Escherichia coli, Salmonella typhi, Proteus mirabilis, and Klebsiella pneumonia). Despite this, the crude saponin had no effect on Aspergillus niger and Candida albicans. The crude saponin also possesses outstanding in vitro antithrombotic activity on blood clot. Interestingly, the crude saponins have an outstanding anticancer activity of 89.26%, with an IC50 value of 58.41 µg/mL. Overall, the findings conclude that crude saponin derived from D. hamiltonii tuberous root could be used in pharmaceutical formulations.


Asunto(s)
Antiinfecciosos , Saponinas , Antioxidantes/farmacología , Fibrinolíticos/farmacología , Peróxido de Hidrógeno , Saponinas/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología
6.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175328

RESUMEN

Different parts of Ficus religiosa are the common components of various traditional formulations for the treatment of several blood disorders. The new-fangled stem buds' powder was extracted with 80% ethanol and successively fractionated by chloroform and methanol. Chloroform and methanol fractions of Ficus religiosa (CFFR and MFFR) were tested for antiplatelet, antithrombotic, thrombolytic, and antioxidant activity in ex vivo mode. The MFFR was particularly investigated for GC-MS and toxicity. The antiplatelet activity of the CFFR, MFFR, and standard drug aspirin at 50 µg/mL was 54.32%, 86.61%, and 87.57%, and a significant delay in clot formation was noted. CFFR at different concentrations did not show a significant effect on the delay of clot formation, antiplatelet, and free radical scavenging activity. The most possible marker compounds for antiplatelet and antioxidant activity identified by GC-MS in the MFFR are salicylate derivatives aromatic compounds such as benzeneacetaldehyde (7), phenylmalonic acid (13), and Salicylic acid (14), as well as Benzamides derivatives such as carbobenzyloxy-dl-norvaline (17), 3-acetoxy-2(1H)-pyridone (16), and 3-benzylhexahydropyrrolo [1,2-a] pyrazine-1,4-dione (35). A toxicity study of MFFR did not show any physical indications of toxicity and mortality up to 1500 mg/kg body weight and nontoxic up to 1000 mg/kg, which is promising for the treatment of atherothrombotic diseases.


Asunto(s)
Fibrinolíticos , Ficus , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Metanol , Antioxidantes/farmacología , Cloroformo , Cromatografía de Gases y Espectrometría de Masas
7.
Phytother Res ; 37(9): 4092-4101, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37253375

RESUMEN

Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor ß1 (TGF-ß1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-ß1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-ß1-treated AML-12 cells. Additionally, Honokiol reduced the expression of ß-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) and JNK in TGF-ß1-treated AML-12 cells via TGF-ß1/nonSmad pathway. Conversely, GSK3ß inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, ß-catenin and migration and activate E-cadherin in TGF-ß1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-ß1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3ß/JNK and inhibition of AKT/ERK/p38/ß-catenin/TMPRSS4 signaling axis.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt , Glucógeno Sintasa Quinasa 3 beta , Transición Epitelial-Mesenquimal , Cateninas/farmacología , Fibrinolíticos/farmacología , Cadherinas , Cirrosis Hepática
8.
Biomed Pharmacother ; 159: 114285, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706630

RESUMEN

Tea consumption has been linked to a decreased risk of cardiovascular disease (CVD) mortality, which imposes a heavy burden on the healthcare system; however, which components in tea cause this beneficial effect is not fully understood. Here we uncovered a cystatin (namely CsCPI1), which is a cysteine proteinase inhibitor (CPI) of the tea plant (Camellia sinensis) that promotes antithrombotic activity. Since thrombosis is a common pathogenesis of fatal CVDs, we investigated the effects of CsCPI1, which showed good therapeutic effects in mouse models of thrombotic disease and ischemic stroke. CsCPI1 significantly increases endothelial cell production of nitric oxide (NO) and inhibits platelet aggregation. Notably, CsCPI1 exhibited no cytotoxicity or resistance to pH and temperature changes, which indicates that CsCPI1 might be a potent antithrombotic agent that contributes to the therapeutic effects of tea consumption against CVD. Specifically, the antithrombotic effects of CsCPI1 are distinct from the classical function of plant cystatins against herbivorous insects. Therefore, our study proposes a new potential role of cystatins in CVD prevention and treatment, which requires further study.


Asunto(s)
Camellia sinensis , Enfermedades Cardiovasculares , Cistatinas , Fibrinolíticos , Animales , Ratones , Camellia sinensis/química , Cistatinas/farmacología , Fibrinolíticos/farmacología , Hojas de la Planta/química
9.
J Ethnopharmacol ; 301: 115744, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36181984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson is traditionally used in Brazil as an adjunct in the relief of mild anxiety, as an antispasmodic, and as an antidyspeptic. This medicinal species was included in the Phytotherapeutic Form of the Brazilian Pharmacopeia 2nd edition (2021) and has already been described as the most used medicinal plant in a study with patients from an Anticoagulation Clinic in Brazil. Meanwhile, no studies were found that support the safety of the use of L. alba in patients using anticoagulants, a drug with several safety limitations. AIM OF THE STUDY: Provide scientific evidence to ensure the safety of the concomitant use of L. alba and warfarin and support the management of these patients by evaluating its in vitro anticoagulant effect and chemical composition. And, as a timely complementation, evaluate the potential of this medicinal species in the development of new antithrombotics. METHODS: The chemical profile of L. alba derivatives was analyzed by chromatographic methods such as Ultra-Performance Liquid Chromatography (UPLC) coupled with electrospray ionization mass spectrometry (ESI-MS), qualitative UPLC using Diode-Array Detection, and Thin Layer Chromatography. The anticoagulant activity was evaluated by the innovative Thrombin Generation Assay by Calibrated Automated Thrombogram method and using traditional coagulometric tests: prothrombin time, activated partial thromboplastin time, and plasma fibrinogen measurement. RESULTS: Extracts and fractions prolonged the coagulation time in all the tests and reduced thrombin formation in thrombin generation assay. Coagulation times with the addition of ethanloic extract (2.26 mg/mL) was 17.78s, 46.43s and 14.25s respectively in prothrombin time, activated partial thromboplastin time and fibrinogren plasma measurement. In thrombin generation test, this same extract showed ETP as 323 nM/min compared to control (815 nM/min) with high tissue factor and 582 nM/min compared to control (1147 nM/min) using low tissue factor. Presence of flavonoids, phenylpropanoids, and triterpenes were confirmed by chromatographic methods and 13 compounds were identified by UPLC-ESI-MS. Based on these results and on the scientific literature, it is possible to propose that phenylpropanoids and flavonoids are related to the anticoagulant activity observed. CONCLUSION: The results demonstrate the in vitro anticoagulant activity of L. alba, probably due to the activation of intrinsic and extrinsic pathways. It is concluded, then, that there is a potential for interaction, which needs to be further studied, between L. alba and warfarin. Also, this medicinal species shows a great potential for use in the development of new antithrombotics.


Asunto(s)
Lippia , Humanos , Lippia/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Warfarina , Trombina , Tromboplastina , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Flavonoides/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
10.
Appl Biochem Biotechnol ; 195(2): 772-800, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36173546

RESUMEN

Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.


Asunto(s)
Antioxidantes , Hibiscus , Ratas , Animales , Antioxidantes/química , Ratas Sprague-Dawley , Hibiscus/química , Hibiscus/metabolismo , Fibrinolíticos/farmacología , Etanol/metabolismo , Diclofenaco/farmacología , Diclofenaco/metabolismo , Nitrito de Sodio , Carbonilación Proteica , Estrés Oxidativo , Extractos Vegetales/química , Semillas/química
11.
J Ethnopharmacol ; 300: 115701, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089177

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata (Willd.) Ohwi and Pueraria lobata var. thomsonii (Benth.) Maesen are nutritious medicine food homology plants that are widely used in the food and health products industry and are excellent natural materials for the development of new health foods, with great potential for domestic and foreign markets. Clinically, P. lobata and P. thomsonii are used to treat coronary heart disease, atherosclerosis, cerebral infarction and other cardiovascular diseases, and antithrombotic actions may be their core effect in the treatment of thrombotic diseases. However, the underlying mechanisms of the antithrombotic properties of P. lobata and P. thomsonii have not been clarified. METHODS: First, P. lobata and P. thomsonii were identified by high-performance liquid chromatography (HPLC). An arteriovenous bypass thrombosis rat model was established. Thrombus dry‒wet weight, platelet accumulation rate and the four coagulation indices, including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB), were detected in plasma to manifest the P. lobata and P. thomsonii antithrombotic function. Network pharmacology and molecular docking methods were used to obtain key targets and verify reliability. David 6.8 was used for GO and KEGG analyses to explore pathways and potential targets for P. lobata and P. thomsonii antithrombotic functions. Prostaglandin I2 (PGI2), thromboxane A2 (TXA2), cyclooxygenase 2 (COX-2), myeloperoxidase (MPO) and endothelial nitric oxide synthase (eNOS) were tested by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results indicated that P. lobata and P. thomsonii can reduce thrombus dry‒wet weight and platelet accumulation in rats and inhibit TT, APTT, FIB, and PT. A comprehensive network pharmacology approach successfully identified 9 active ingredients in P. lobata and P. thomsonii. The main active ingredients include polyphenols, amino acids and flavonoids. A total of 15 antithrombotic function targets were obtained, including 3 key targets (PTGS2, NOS3, MPO). Pathway analysis showed 10 significant related pathways and 29 biological processes. P. lobata and P. thomsonii inhibited platelet aggregation by upregulating PGI2 and downregulating TXA2, inhibited PTGS2 to reduce inflammation, and increased the level of eNOS to promote vasodilation. In addition, P. lobata and P. thomsonii alleviated oxidative stress by increasing SOD levels and significantly decreasing MDA contents. CONCLUSION: The results of the study further clarify the antithrombotic mechanism of action of P. lobata and P. thomsonii, which provides a scientific basis for the development of new drugs for thrombogenic diseases and lays the foundation for the development of P. lobata and P. thomsonii herbal resources and P. lobata and P. thomsonii health products.


Asunto(s)
Pueraria , Trombosis , Aminoácidos , Animales , Ciclooxigenasa 2 , Epoprostenol/uso terapéutico , Fibrinógeno , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Flavonoides/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Óxido Nítrico Sintasa de Tipo III , Peroxidasa , Pueraria/química , Ratas , Reproducibilidad de los Resultados , Superóxido Dismutasa , Trombosis/tratamiento farmacológico , Tromboxano A2
12.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555265

RESUMEN

One of the most common neurological disorders involving oxidative stress is stroke. During a stroke, the balance of redox potential in the cell is disturbed, and, consequently, protein oxidation or other intracellular damage occurs, ultimately leading to apoptosis. The pineal gland hormone, melatonin, is one of the non-enzymatic antioxidants. It not only modulates the perianal rhythm but also has anti-inflammatory properties and protects against stress-induced changes. The focus of this research was to evaluate the concentration of the carbonyl groups and melatonin metabolite in time in patients with acute ischemic stroke that were treated with intravenous thrombolysis. This included a comparison of the functional status of patients assessed according to neurological scales with the control sample comprising healthy people. The studies showed that the serum concentrations of carbonyl groups, which were elevated in patients with ischemic stroke (AIS) in comparison to the control samples, had an impact on the patients' outcome. A urine concentration of the melatonin metabolite, which was lower in patients than controls, was related to functional status after 24 h from cerebral thrombolysis. It shows that determination of carbonyl groups at different time intervals may be an important potential marker of protein damage in patients with AIS treated with cerebral thrombolysis, and that impaired melatonin metabolism induces a low antioxidant protection. Thus, due to the neuroprotective effects of melatonin, attention should also be paid to the design and conduct of clinical trials and hormone supplementation in AIS patients to understand the interactions between exogenous melatonin and its endogenous rhythm, as well as how these relationships may affect patient outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Melatonina , Accidente Cerebrovascular , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Fibrinolíticos/farmacología , Estrés Oxidativo , Oxidación-Reducción
13.
Blood Coagul Fibrinolysis ; 33(8): 457-462, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239551

RESUMEN

Citrus sinensis and Lippia alba are herbal medicines widely used in the form of tea (infusion, decoction), which ethanolic extracts have already shown great anticoagulant activity in vitro . For this reason, they seem to be excellent candidates for the development of new antithrombotics and also have the potential to interact with them. The aim of this study was to evaluate the activity of aqueous extracts in blood coagulation and platelet aggregation, in addition to analysing the micromolecular composition of these species. Thrombin generation test (TGT) by the Calibrated Automated Thrombogram method and Platelet Aggregation Test by turbidimetry were performed to evaluate the biological activities, while the chemical composition was qualitatively evaluated using high-performance liquid chromatography. Aqueous extracts were elaborated according to the folk use. All extracts were effective in reducing thrombin formation in TGT. Infusion of L. alba and infusion and decoction of C. sinensis at a concentration of 0.6 mg/ml significantly reduced platelet aggregation induced by ADP, and only the decoction of L. alba at the same concentration was able to significantly reduce collagen-induced platelet aggregation. The presence of phenylpropanoids and flavonoids in C. sinensis and L. alba extracts was verified. Furthermore, hesperidin was identified in C. sinensis through coinjection. C. sinensis and L. alba are rich in phenolics and demonstrated an in-vitro effect on important processes of haemostasis (blood coagulation, platelet agreggation), corroborating the potential of C. sinensis and L. alba for the development of antithrombotics and interact with them.


Asunto(s)
Citrus sinensis , Lippia , Lippia/química , Anticoagulantes/farmacología , Fibrinolíticos/farmacología , Trombina , Extractos Vegetales/farmacología , Extractos Vegetales/química
14.
Nutrients ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36079810

RESUMEN

Although fibrinolytic enzymes and thrombolytic agents help in cardiovascular disease treatment, those currently available have several side effects. This warrants the search for safer alternatives. Several natural cysteine protease preparations are used in traditional medicine to improve platelet aggregation and thrombosis-related diseases. Hence, this study aimed to investigate the effect of ficin, a natural cysteine protease, on fibrin(ogen) and blood coagulation. The optimal pH (pH 7) and temperature (37 °C) for proteolytic activity were determined using the azocasein method. Fibrinogen action and fibrinolytic activity were measured both electrophoretically and by the fibrin plate assay. The effect of ficin on blood coagulation was studied by conventional coagulation tests: prothrombin time (PT), activated partial thromboplastin time (aPTT), blood clot lysis assay, and the κ-carrageenan thrombosis model. The Aα, Bß, and γ bands of fibrinogen are readily cleaved by ficin, and we also observed a significant increase in PT and aPTT. Further, the mean length of the infarcted regions in the tails of Sprague-Dawley rats was shorter in rats administered 10 U/mL of ficin than in control rats. These findings suggest that natural cysteine protease, ficin contains novel fibrin and fibrinogenolytic enzymes and can be used for preventing and/or treating thrombosis-associated cardiovascular disorders.


Asunto(s)
Proteasas de Cisteína , Trombosis , Animales , Anticoagulantes/farmacología , Carragenina , Proteasas de Cisteína/uso terapéutico , Estrona/análogos & derivados , Fibrina/uso terapéutico , Fibrinógeno , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Ficaína , Ratas , Ratas Sprague-Dawley , Trombosis/tratamiento farmacológico
15.
Biomed Pharmacother ; 153: 113453, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076567

RESUMEN

Atrial fibrillation significantly increases the risk of thromboembolism and stroke. Wenxin Keli (WXKL) is a widely used Chinese patent medicine against arrhythmia but if it has antithrombotic activity is unknown. Since platelet activation is a critical factor in thrombosis and the key target for many antithrombotic drugs, this study aims to demonstrate the antithrombotic efficacy of WXKL. In vitro platelet activation experiments showed that WXKL significantly inhibited platelet adhesion and aggregation. The potential active monomers in WXKL were screened by in silico prediction and in vitro platelet aggregation/adhesion assays. From WXKL chemical fractions and more than 40 monomers, linoleic acid (LA) was identified as the strongest antiplatelet compound. Oral administration of WXKL (1.2 g/kg/day) and LA (50 mg/kg/day) for 7 days significantly improved FeCl3-induced carotid thrombus formation in ICR mice without prolonging bleeding time. Flow cytometry showed that both WXKL and LA inhibited the release of p-selectin after platelet activation. ELISA showed that WXKL and LA also inhibited the expression of 6-Keto-PGF1α in plasma of mice with thrombus, but had no obvious effect on the expression of TXB2. WXKL inhibited platelet activation by broadly inhibiting the phosphorylation of protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and phospholipase C (PLC) ß3. In contrast, LA only inhibited the phosphorylation of PLCß3. In conclusion, WXKL and its active component LA showed good antiplatelet and antithrombotic efficacy in vivo and in vitro. Mechanistically, the multicomponent Chinese medicine WXKL acts on multiple targets in the platelet activation pathway whereas its active monomer linoleic acid acts specifically on phospholipase C ß3.


Asunto(s)
Fibrilación Atrial , Ácido Linoleico , Activación Plaquetaria , Trombosis , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Fibrinolíticos/farmacología , Ácido Linoleico/farmacología , Ácido Linoleico/uso terapéutico , Ratones , Ratones Endogámicos ICR , Selectina-P/efectos de los fármacos , Selectina-P/metabolismo , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Trombosis/tratamiento farmacológico
16.
Phytomedicine ; 104: 154271, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35777120

RESUMEN

BACKGROUND: Coronary thrombosis and its correlated disorders are main healthcare problems globally. The therapeutic effects of current treatments involving antiplatelet drugs are not fully satisfactory. Danshensu (DSS) is an important monomer obtained from Salvia miltiorrhiza roots that have been widely employed for vascular diseases in medicinal practices. Nonetheless, the underlying mechanisms of DSS are not fully unraveled. PURPOSE: The objective of this study was to penetrate the antithrombotic and antiplatelet mechanisms of DSS. METHODS: Network pharmacology assay was used to forecast the cellular mechanisms of DSS for treating thrombosis. The work focused the impacts of DSS on platelet activation by analyzing aggregation and adhesion in vitro. Flow cytometry, western blotting, CM-H2DCFDA staining and mitochondrial function assays were performed to reveal the molecular mechanisms. The model of common carotid artery thrombus induced by ferric chloride was established. The wet weight of thrombus was measured, and the thrombosis was observed by hematoxylin and eosin (H&E) staining, in order to support the inhibitory effect of DSS on thrombosis. RESULTS: Data mining found the antithrombotic effect of DSS is related to platelet activation and the core target is silent information regulator 1 (SIRT1). We confirmed that DSS dose-dependently inhibited platelet activation in vitro. DSS was further demonstrated to induce the expression of SIRT1 and decreased reactive oxygen species (ROS) burden and thereby prevented mitochondrial dysfunction. Mitochondrial function tests further indicated that DSS prevented mitochondrial DNA (mtDNA) release, which induced activation of platelet in a dendritic cell specific intercellular-adhesion-molecule-3 grabbing non-integrin (DC-SIGN)-dependent manner. In carotid artery injury model induced by ferric chloride, DSS inhibited the development of carotid arterial thrombosis. More encouragingly, in tail bleeding time assay, DSS did not augment bleeding risk. CONCLUSION: These findings indicated that DSS effectively inhibited platelet activation by depressing the collection of ROS and the release of platelet mtDNA without arousing hemorrhage risk. DSS might represent a promising candidate drug for thrombosis and cardiovascular disease therapeutics.


Asunto(s)
Sirtuina 1 , Trombosis , ADN Mitocondrial , Fibrinolíticos/farmacología , Humanos , Lactatos , Mitocondrias/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
17.
Biomed Pharmacother ; 149: 112842, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35325851

RESUMEN

Anisomeles indica (L.) Kuntze is an ethnomedicinally important plant that has long been used in traditional medicine to treat a variety of ailments, including dyspepsia, abdominal pain, colic, allergies, inflammation, and rheumatic arthritis. However, the scientific framework underlying these medicinal properties is not well known. This study aimed to investigate the antidepressive, antidiarrheal, thrombolytic, and anti-inflammatory potential of a methanol extract of A. indica (MeOH-AI). The potential bioactive compounds in the MeOH-AI were identified using gas chromatography-mass spectrometry (GC-MS), and antidepressant activities were evaluated using the tail suspension test (TST) and forced swim test (FST). Antidiarrheal effects were also assayed in castor oil-induced diarrhea and gastrointestinal motility studies. The anti-inflammatory activities were explored by examining the effects on protein inhibition and denaturation in heat- and hypotonic solution-induced hemolysis assays. The thrombolytic activity was evaluated using the clot lysis test in human blood. BIOVIA and Schrödinger Maestro (v11.1) were applied for docking analysis to determine binding interactions, and the absorption, distribution, metabolisms, excretion/toxicity (ADME/T) properties of bioactive compounds were explored using a web-based method. The GC-MS analysis of MeOH-AI revealed the presence of several bioactive compounds. MeOH-AI administration resulted in significant (p < 0.01) reductions in the immobility times for both the FST and TST compared with those in the control group. MeOH-AI also induced significant (p < 0.01) reductions in castor oil-induced diarrhea severity and gastrointestinal motility in a mouse model. In addition, the in vitro anti-inflammatory and thrombolytic activity studies produced remarkable responses. The binding assay showed that 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine interacts favorably with monoamine oxidase and serotonin and M3 muscarinic acetylcholine receptors, displaying good pharmacokinetic properties, which may mediate the effects of MeOH-AI on depression and diarrhea. Overall, the research findings indicated that MeOH-AI has significant antidepressant, antidiarrheal, and anti-inflammatory effects and may represent an alternative source of novel therapeutic factors.


Asunto(s)
Antidiarreicos , Lamiaceae , Animales , Antiinflamatorios/uso terapéutico , Antidepresivos/farmacología , Antidiarreicos/farmacología , Aceite de Ricino , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Fibrinolíticos/farmacología , Ratones , Extractos Vegetales/uso terapéutico
18.
Nat Prod Res ; 36(23): 6106-6110, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35306945

RESUMEN

The present study is aimed to evaluate in vitro thrombolytic activity and antioxidant activity of Hibiscus tiliaceus L. Chemical characterization of bioactive extract was determined by using GC-MS analysis. The thrombolytic potential was performed by the clot lysis method. Antioxidant activity was evaluated by an in vitro assay involving DPPH radical scavenging and hydrogen peroxide scavenging assay. Blood Clots when treated with sterile distilled water, petroleum ether extract, methanol extract and streptokinase showed 7.983 ± 2.197%, 34.10 ± 8.436%, 14.41 ± 5.276 and 62.21 ± 5.519 clot lysis, respectively. Petroleum ether extract shows significant activity when compared with control (P ≤ 0.05). All extracts showed concentration dependent free radical scavenging activity. Bioactive extract of H. tiliaceus contained 23 phytoconstituents as revealed by GC-MS study. The significant thrombolytic activity is exhibited due to presence of sterols as reveled by GC-MS analysis. Further study required to confirm in vivo clot lysis properties.


Asunto(s)
Hibiscus , Malvaceae , Antioxidantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Fibrinolíticos/farmacología
19.
Biomed Res Int ; 2022: 4145659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178447

RESUMEN

OBJECTIVE: The present study investigated the effect of the leaves extracts and fractions of Plectranthus glandulosus on the inhibition of pancreatic lipase, cholesterol esterase, adipocytes lipid uptake, and antithrombotic activity which may be important in atherosclerosis development. METHODS: Aqueous, ethanolic, and hydroethanolic extracts of Plactranthus glandulosus were prepared by maceration. The hydroethanolic extract was fractionated into n-hexane, ethylacetate, and n-butanol fractions and their inhibition of pancreatic lipase, cholesterol esterase, adipocytes lipid uptake, and antithrombotic activities measured. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis was carried out to determine phytochemical constituents present in the extracts. RESULTS: The standard orlistat exhibited a higher inhibitory activity on pancreatic lipase and cholesterol esterase (16.31 µg/mL and 15.75 µg/mL, respectively) compared to ethyl acetate fraction (IC50, 17.70 µg/mL and IC50, 24.8 µg/mL, respectively). Among crude extract, hydroethanolic extract showed a better inhibition against pancreatic lipase (IC50, 21.06 µg/mL) and cholesterol esterase (IC50, 25.14 µg/mL) though not comparable to the effect of orlistat. The best lipid uptake inhibition was observed in the hydroethanolic extract (IC50, 45.42 µg/mL) followed by the ethyl acetate fraction (IC50, 47.77 µg/mL). A better antithrombolytic activity was exhibited by the ethyl acetate fraction at all concentrations (50-800 µ/mL), while hydroethanolic extract exhibited the best activity among crude extract. However, these were not comparable to the standard aspirin. The LC-HRMS analysis revealed the presence of 7-O-methyl luteolin 5-O-ß-D-glucopyranoside, chrysoeriol 5-O-ß-D-glucopyranoside, 5,7-dihydroxy-3,2',4'-trimethoxyflavone, and plectranmicin as major compounds in both hydroethanolic extract and ethyl acetate fraction. CONCLUSION: Thus, our finding supports the traditional use of this plant, which might provide a potential source for future antiatherosclerotic drug discovery.


Asunto(s)
Lamiaceae , Plectranthus , Antioxidantes/farmacología , Fibrinolíticos/farmacología , Lipasa , Lípidos/análisis , Orlistat/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Plectranthus/química , Esterol Esterasa/análisis
20.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164177

RESUMEN

Dracaena reflexa, a traditionally significant medicinal plant, has not been extensively explored before for its phytochemical and biological potential. The present study was conducted to evaluate the bioactive phytochemicals and in vitro biological activities of D. reflexa, and perform in silico molecular docking validation of D. reflexa. The bioactive phytochemicals were assessed by preliminary phytochemical testing, total bioactive contents, and GC-MS analysis. For biological evaluation, the antioxidant (DPPH, ABTS, CUPRAC, and ABTS), antibacterial, thrombolytic, and enzyme inhibition (tyrosinase and cholinesterase enzymes) potential were determined. The highest level of total phenolic contents (92.72 ± 0.79 mg GAE/g extract) was found in the n-butanol fraction while the maximum total flavonoid content (110 ± 0.83 mg QE/g extract) was observed in methanolic extract. The results showed that n-butanol fraction exhibited very significant tyrosinase inhibition activity (73.46 ± 0.80) and acetylcholinesterase inhibition activity (64.06 ± 2.65%) as compared to other fractions and comparable to the standard compounds (kojic acid and galantamine). The methanolic extract was considered to have moderate butyrylcholinesterase inhibition activity (50.97 ± 063) as compared to the standard compound galantamine (53.671 ± 0.97%). The GC-MS analysis of the n-hexane fraction resulted in the tentative identification of 120 bioactive phytochemicals. Furthermore, the major compounds as identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between the ligands and the enzymes (tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes). The results of this study suggest that Dracaena reflexa has unquestionable pharmaceutical importance and it should be further explored for the isolation of secondary metabolites that can be employed for the treatment of different diseases.


Asunto(s)
Dracaena/química , Fitoquímicos/química , Fitoquímicos/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fibrinolíticos/química , Fibrinolíticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA